Refine Your Search

Topic

Search Results

Technical Paper

Numerical Study on Flammability Limit and Performance of Compression-Ignition Argon Power Cycle Engine with Fuel of Hydrogen

2021-04-06
2021-01-0391
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Performance of Spark Energy Distribution Strategy on a Production Engine under Lean-Burn Conditions

2021-04-06
2021-01-0476
Stronger ignition sources become more favorable under extreme lean/EGR conditions. Under those conditions, the reduced pumping loss and low combustion temperature can contribute to further engine efficiency improvement for spark ignited engines. Multicoil ignition system can enhance ignition energy as well as modulate discharge profile. The ignition energy can either be deployed through single spark gap to enhance the ignition capability of the plasma channel, or be distributed to multiple ignition sites to establish multiple flame kernels to secure flame kernel initiation. The multiple ignition coils used for energy distribution ignition strategy also consume more power, in order to maintain the stable operation of the engine under lean operation limit. In this paper, efficacy of concentrated and distributed multicoil ignition strategies were investigated on a spark ignited inline 4-cylinder production engine using a three-ignition-coil pack.
Technical Paper

Simulation Research on Ultra-Lean Constant-Volume Combustion Initiated by Spark-Ignited Micro-Fuel-Jet

2022-03-29
2022-01-0432
In the ultra-lean combustion mode, the combustion temperature is relatively low, which is expected to avoid the high-temperature NOx generation. And it also can use excess air to fully oxidize CO, HC and Soot, to achieve cleaner combustion. But at the same time, ultra-lean combustion has difficulties in ignition and flame propagation. This paper used CONVERGE to simulate the combustion process and products of a new ultra-lean combustion mode, which ignited the ultra-lean premixed fuel/air mixture with the spark-ignited micro-fuel-jet, in a constant-volume vessel with a 6-hole GDI injector. The differences of combustion processes and products were simulated for two spark-ignition positions, including ‘on’ the micro-jet spray and ‘between’ two micro-jet sprays. It was found that the combustion duration (the time for burned-fuel-ratio from 10% to 90%) could be shortened by about 14.3% if igniting ‘on’ the micro-jet spray, but the amount of NOx generated would increase about 21.0%.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Technical Paper

Study of Combustion Characteristics of a Quasi Internal Combustion Rankine Cycle Engine

2013-10-14
2013-01-2698
Internal combustion Rankine cycle (ICRC) engine uses oxygen instead of air as oxidant during the combustion process, therefore totally eliminates the emission of NOx. CO2 could be captured after separated from the exhaust gas, the latter are mainly water vapor and CO2, through condensation at a relatively low price, and thus an ultra-low emission working cycle is achieved. Moreover, water is heated up by exhaust gas and injected into the cylinder during the combustion process to control combustion temperature, and evaporation of the water mist would increase working fluid inside the cylinder, therefore enhance indicated thermal efficiency. This study investigates the combustion characteristics of a quasi ICRC on a single-cylinder SI engine fueled with propane. Gas mixture of O2/CO2 is employed to simulate EGR in order to control in-cylinder temperature.
Technical Paper

Study of the Combustion and Emission Characteristics of a Quasi ICRC Engine Under Different Engine Loads

2014-04-01
2014-01-1202
A novel reciprocating engine version of oxy-fuel combustion cycle combined with water direct injection (known as internal combustion rankine cycle) is presented in this paper. Water is injected near top dead center to control the reaction rate of the oxy-fuel mixture, as well as the peak in-cylinder temperature. The evaporation of the water mist will increase the mass of working gas inside the cylinder, and enhances the thermo efficiency and MEP. Moreover, the injected water is heated up through heat exchangers by both engine coolant and exhaust gas, and the waste heat is effectively recovered this way. This study investigates the combustion and emission characteristics of ICRC under different engine loads based on a single-cylinder, air-cooled SI engine fueled with propane. An extra diesel injector is employed to inject water with high injection temperature (160°C).
Technical Paper

Study on Diesel Atomization Characteristics for Hot Exhaust Gas Burner

2019-12-19
2019-01-2238
A hot exhaust gas burner system is applied to break through the limitations of the traditional diesel engine bench. Sufficient atomization is needed to realize spark ignition in a low-pressure burner system. Hence, the design of the atomization system is studied both experimentally and numerically. Through the reasonable optimization of the nozzle diameter, the air assist pressure, the angle among the four nozzles of four V-structures as well as the diameter and the angle of co-flow holes, an even distribution of small diesel droplets in the ignition area of the burner is realized. Consequently, diesel spray can be spark ignited in a low-pressure burner system, which can simulate the diesel exhaust. And the DPF can be installed downstream of the burner to quickly analyze the effect of ash accumulation on the DPF.
Technical Paper

The Characteristic of Transient HC Emissions of the First Firing Cycle During Cold Start on an LPG SI Engine

2006-10-16
2006-01-3403
The first firing cycle is very important for cold-start. Misfire of the first firing cycle can lead to significant HC emissions and affect the subsequent cycles. The first firing cycle for Gasoline SI engine have been reported in many studies. Liquefied petroleum gas (LPG) as an alternative fuel has been widely used in commercial vehicles during the last decade. However, the properties of the first firing cycle for LPG SI engine have been seldom reported. This paper presents an investigation of the characteristics of transient HC emissions of the first firing cycle during cold start on a LPG SI engine. A fast-response flame ionization detector (FFID) was applied to measure transient HC emissions of the first firing cycle in the exhaust port of the engine. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

The Effect of Loading Rate on Rubber Bushing Push-Out Testing of Front Lower Control Arms

2016-04-05
2016-01-0430
The Front Lower Control Arm (FLCA) is a key part of the automotive suspension for performance and safety. Many FLCA designs attach to the front sub-frame using rubber handling and riding bushings, which determine the vehicle dynamics and comfort. In this paper, a design for a ride bushing using a metal pin structure is discussed. The inner portion of the ride bushing is a hollow metal collar with a layer of rubber, and the FLCA pin structure is pressed into the rubber. For safety requirements, the bushings must meet a pin push-in and push-out force requirement. During the development of the bushing design, different test groups conducted tests to determine if manufactured parts meet the push-out force specification. Each group tested at a different load rate and generated different maximum push out force values. The push-in/out speed was found to have a strong influence on the generated maximum load.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
X